bayespy.inference.VB

class bayespy.inference.VB(*nodes, tol=1e-05, autosave_filename=None, autosave_iterations=0, use_logging=False, user_data=None, callback=None)[source]

Variational Bayesian (VB) inference engine

Parameters
nodesnodes

Nodes that form the model. Must include all at least all stochastic nodes of the model.

toldouble, optional

Convergence criterion. Tolerance for the relative change in the VB lower bound.

autosave_filenamestring, optional

Filename for automatic saving

autosave_iterationsint, optional

Iteration interval between each automatic saving

callbackcallable, optional

Function which is called after each update iteration step

__init__(*nodes, tol=1e-05, autosave_filename=None, autosave_iterations=0, use_logging=False, user_data=None, callback=None)[source]

Methods

__init__(*nodes[, tol, autosave_filename, ...])

add(x1, x2[, scale])

Add two vectors (in parameter format)

compute_lowerbound([ignore_masked])

compute_lowerbound_terms(*nodes)

dot(x1, x2)

Computes dot products of given vectors (in parameter format)

get_gradients(*nodes[, euclidian])

Computes gradients (both Riemannian and normal)

get_iteration_by_nodes()

get_parameters(*nodes)

Get parameters of the nodes

gradient_step(*nodes[, scale])

Update nodes by taking a gradient ascent step

has_converged([tol])

load(*nodes[, filename, nodes_only])

load_user_data(filename)

loglikelihood_lowerbound()

optimize(*nodes[, maxiter, verbose, method, ...])

Optimize nodes using Riemannian conjugate gradient

pattern_search(*nodes[, collapsed, maxiter])

Perform simple pattern search [4].

plot(*nodes, **kwargs)

Plot the distribution of the given nodes (or all nodes)

plot_iteration_by_nodes([axes, diff])

Plot the cost function per node during the iteration.

save(*nodes[, filename])

set_annealing(annealing)

Set deterministic annealing from range (0, 1].

set_autosave(filename[, iterations, nodes])

set_callback(callback)

set_parameters(x, *nodes)

Set parameters of the nodes

update(*nodes[, repeat, plot, tol, verbose, ...])

use_logging(use)

Attributes

ignore_bound_checks